<u>Chapter 12 Introduction to Vectors</u> Supplementary Notes

Name:	(()	Class: F.5
-------	---	---	---	------------

12.1 Concepts of Vectors

A. Scalars and Vectors

- Some quantities can be described by magnitudes (numerical values) alone, such as temperature, length and time. These quantities are called
- Some quantities have to be described by both magnitude and divertim, such as displacement, velocity and force. These quantities are called vector.

B. Representation of Vectors

A vector is represented by a directed line segment.

The figure shows a vector from an $\underline{\text{TNTIA}}$ point X to a $\underline{\text{Termina}}$ point Y. This vector can be denoted by \overline{XY} , \mathbf{u} or \overline{u} .

Its magnitude can be denoted by $|\overrightarrow{XY}|$, $|\mathbf{u}|$ or $|\overrightarrow{u}|$.

C. Equality of Vectors and Negative Vector

Two vectors are equal if and only if they have the same ______ and the same ______ and the same ______ .

The **negative vector** of **u** has the same magnitude but in the **opposite direction** of **u**. It is denoted by **-u**.

$$\mathbf{v} = \underline{\dot{\mathbf{u}}}$$

$$r = \overline{-4}$$

$$\overrightarrow{PQ} = \overrightarrow{XY}$$

$$\overrightarrow{SR} = -\overrightarrow{PQ}$$

Example

- The figure shows a square ABCD. Determine whether the following sentences are correct.
 - $\overrightarrow{AB} = \overrightarrow{CD}$ \times $\overrightarrow{AB} = \overrightarrow{PC}$ $\overrightarrow{AB} = -\overrightarrow{CD}$
 - (b) $\overrightarrow{AB} = \overrightarrow{AD}$ X
 - $\left| \overrightarrow{AB} \right| = \left| \overrightarrow{CD} \right|$ length of AB, CD

D. Zero Vector and Unit Vector

A vector with magnitude is called a **zero vector** is denoted by **0**. Zero vectors do not have any specified direction.

A vector with magnitude ____ is called a **unit vector**, i.e. **u** is a unit vector when $|\mathbf{u}| = _{\mathbf{u}}$ and is denoted by $\hat{\mathbf{u}}$.

12.2 Basic Operations of Vectors

A. Addition of Vectors

Definition:

Triangle Law of Addition

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$\overrightarrow{AB} = \overrightarrow{DC}$, $\overrightarrow{AD} = \overrightarrow{BC}$

Parallelogram Law of Addition

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

Subtraction of Vectors

$$\begin{array}{ll}
- \geqslant \text{ direction} & \overrightarrow{a} - \overrightarrow{b} \\
\overrightarrow{AB} = \overrightarrow{a} & = \overrightarrow{AB} - \overrightarrow{AC} \\
\overrightarrow{AC} = \overrightarrow{b} & = \overrightarrow{AB} + (-\overrightarrow{AC}) \\
= \overrightarrow{AB} + \overrightarrow{CA}
\end{array}$$

$$\vec{a} - \vec{b}$$

$$= AB - AC$$

$$= \vec{CA} + \vec{AB}$$

Subtraction of Vectors

$$\overrightarrow{CB} = \mathbf{a} - \mathbf{b}$$

Example

In the figure, ABCD is a rectangle. Express each of the following as a single vector.

(a)
$$\overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FD}$$

= $\overrightarrow{AF} + \overrightarrow{FD}$
= \overrightarrow{AD}

(b)
$$\overrightarrow{AE} - \overrightarrow{CE} - \overrightarrow{BC}$$

= $\overrightarrow{AE} + \overrightarrow{EC} + \overrightarrow{CB}$
= $\overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$

In the figure, ABCE is a parallelogram. Express each of the following as a single vector.

(a)
$$\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{CD}$$

= $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$
= $\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$

Scalar Multiplication of Vectors and Parallelism

Definition:

It is given that **a** is a non-zero vector.

(i) If k > 0, then the direction of $k\mathbf{a}$ is the same as that of \mathbf{a} , and the magnitude of $k\mathbf{a}$ is k times the magnitude of a.

i.e. $|k\mathbf{a}| = k|\mathbf{a}|$.

(ii) If k < 0, then the direction of $k\mathbf{a}$ is opposite to that of \mathbf{a} , and the magnitude of $k\mathbf{a}$ is -k times the magnitude of a.

i.e. $|k\mathbf{a}| = -k|\mathbf{a}|$

- (iii) If k = 0, then $k\mathbf{a} = \mathbf{0}$.
- \bigstar (iv) $\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$ is a **unit vector** which has the same direction as \mathbf{a} .

Example

In the figure, express b and c in terms of a.

$$\vec{b} = \frac{1}{2}\vec{a}$$

$$\vec{c} = -2\vec{a}$$

$$\vec{c} = -2\vec{a}$$

Properties of and scalar multiplication of vectors:

For any vectors **a**, **b** and scalars λ , μ ,

- $\lambda(\mu \mathbf{a}) = (\lambda \mu) \mathbf{a} = \mu(\lambda \mathbf{a})$
- $(\lambda \pm \mu)\mathbf{a} = \lambda \mathbf{a} \pm \mu \mathbf{a}$ (b)
- (c) $\lambda(\mathbf{a} \pm \mathbf{b}) = \lambda \mathbf{a} \pm \lambda \mathbf{b}$

Two non-zero vectors **a** and **b** are parallel if and only if $\mathbf{b} = \lambda \mathbf{a}$ for some non-zero scalars λ . In particular, for three distinct points A, B and C, if $\overrightarrow{BC} = \lambda \overrightarrow{AB}$, then A, B and C are collinear.

$$\frac{1}{3}\overrightarrow{AB} = \overrightarrow{CD}$$

Example

- In the figure, ABCD is a rectangle. E is a point on AD such that DE = 4AE. Let CD = u and **BD** = \mathbf{v} . Express the following vectors in terms of \mathbf{u} and \mathbf{v} .
 - (a) BC $= \overrightarrow{BD} + \overrightarrow{DC}$ = 7+(-1)
 - = 7-4

(c) BE
=
$$\frac{1}{5}$$
 $\frac{1}{5}$ $\frac{1}{5}$

6. In the figure, D is the mid-point of OB. C is a point on AB such that AC : CB = 1 : 2. Let $\mathbf{OA} = \mathbf{a}$ and $\mathbf{OB} = \mathbf{b}$, express \mathbf{OC} and \mathbf{CD} in terms of \mathbf{a} and \mathbf{b} .

$$\overrightarrow{AB} = \overrightarrow{A0} + \overrightarrow{0B} = -\overrightarrow{0} + \overrightarrow{0}$$
 $\overrightarrow{AC} = \overrightarrow{3} + \overrightarrow{AC} = -\overrightarrow{3} + \overrightarrow{AC} = -\overrightarrow{3} + -\overrightarrow{AC} = -\overrightarrow{AC} =$

7. In the figure, R is a point on QS such that QR : RS = 3 : 1 and M is the mid-point of AR.

AP // QS and QS = 3AP. It is given that $\overrightarrow{AP} = \mathbf{p}$ and $\overrightarrow{AQ} = \mathbf{q}$.

(b) Express
$$\overrightarrow{MP}$$
 in terms of **p** and **q**.

(a)
$$\vec{Q}_{5} = \vec{3}\vec{A}\vec{P} = \vec{3}\vec{P}$$

 $\vec{Q}_{8} = \vec{4}\vec{Q}_{5} = \vec{4}\vec{P}$
 $\vec{A}\vec{R} = \vec{A}\vec{0} + \vec{0}\vec{R} = \vec{9} + \vec{4}\vec{P}$

(b)
$$\vec{A}\vec{M} = \frac{1}{2}\vec{A}\vec{R} = \frac{1}{2}\vec{g} + \frac{9}{8}\vec{p}$$

 $\vec{M}\vec{p} = \vec{M}\vec{A} + \vec{A}\vec{p} = -\vec{A}\vec{M} + \vec{A}\vec{p}$
 $= -\frac{1}{2}\vec{q} - \frac{9}{8}\vec{p} + \vec{p}$
 $= -\frac{1}{2}\vec{q} - \frac{9}{8}\vec{p} - \frac{1}{2}\vec{q}$

In the figure, ABCD is a rectangle. E is a point on CD such that CE = 4DE. If $AD = \mathbf{p}$ and 8.

 $\overrightarrow{AB} = \mathbf{q}$, express $5\overrightarrow{AE} + 2\overrightarrow{CA}$ in terms of \mathbf{p} and \mathbf{q} .

$$\overrightarrow{AB} = \mathbf{q}$$
, express $5\overrightarrow{AE} + 2\overrightarrow{CA}$ in terms of \mathbf{p} and \mathbf{q} .
 $\overrightarrow{DC} = \overrightarrow{AB} = \overrightarrow{q}$
 $\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DE} = \overrightarrow{p} + \cancel{5} \overrightarrow{DC} = \overrightarrow{p} + \cancel{5} \overrightarrow{Q}$
 $\overrightarrow{CA} = \overrightarrow{CB} + \overrightarrow{BA} = -\overrightarrow{BC} - \overrightarrow{AB} = -\overrightarrow{p} - \overrightarrow{q}$
 $\overrightarrow{AF} + 2\overrightarrow{CA} = \overrightarrow{FP} + \overrightarrow{Q} - 2\overrightarrow{P} - 2\overrightarrow{Q}$
 $= 3\overrightarrow{P} - \overrightarrow{Q}$

- In the figure, D and E are two points on AB and AC respectively such that AD:DB=AE:EC=2:1. Let AB=b and AC=c.
 - (a) Express **DE** in terms of **b** and **c**.
 - (b) Hence prove that DE // BC and find DE : BC.

(a)
$$\overrightarrow{DF} = \overrightarrow{DA} + \overrightarrow{AF}$$

$$= -\overrightarrow{AD} + \overrightarrow{AF}$$

$$= -\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$

$$= \frac{1}{3}(\vec{c} - \vec{b})$$

$$= \vec{A} + \vec{A}\vec{c}$$

$$= -\vec{b} + \vec{c}$$

$$= \vec{c} - \vec{b}$$

$$= \vec{c} - \vec{b}$$

$$= \vec{c} - \vec{b}$$

$$DE = \frac{2}{3}BC$$

$$DDE = \frac{2}{3}BC$$

$$DE = \frac{2}{3}BC$$

D. More About Properties of Vectors

Let \mathbf{a} , \mathbf{b} ne two non-zero and non-parallel vectors, and λ , μ be scalars.

- (a) If $\lambda \mathbf{a} + \mu \mathbf{b} = \mathbf{0}$, then $\lambda = \mu = 0$;
- (b) Suppose λ_1 , λ_2 , μ_1 , μ_2 are non-zero scalars.

If $\lambda_1 \mathbf{a} + \mu_1 \mathbf{b} = \lambda_2 \mathbf{a} + \mu_2 \mathbf{b}$, then $\lambda_1 = \lambda_2$ and $\mu_1 = \mu_2$.

Example

10. Let **a** and **b** be two non-zero vectors which are not parallel to each other.

If $\mathbf{u} = 2\mathbf{v}$, where $\mathbf{u} = (5k-1)\mathbf{a} + (k-3)\mathbf{b}$ and $\mathbf{v} = (5+3n)\mathbf{a} + n\mathbf{b}$, find the values of k and n.

$$\vec{h} = 2\vec{v}$$
, $|0+6n=5k-1|$ $2n=k-3$ $k=1$, $n=-1$ $5k-6n=11$ $k-2n=3$

- 11. In the figure, OABC is a parallelogram with OA = a and $OC = c \cdot D$ is a point on OC such that OD : DC = 2 : 1.
 - (a) If AE : ED = 1 : r AE : ED = 1 : r, express **OE** in terms of r, **a** and **c**.
 - (b) If OE = sOB, express **OE** in terms of s, **a** and **c**.
 - (c) Find the values of r and s.

(a)
$$\vec{0} = \frac{2}{3}\vec{0}\vec{0} = \frac{2}{3}\vec{0}$$

 $\vec{A}\vec{D} = \vec{A}\vec{0} + \vec{0}\vec{D} = -\vec{a} + \frac{2}{3}\vec{0}$

$$\overrightarrow{AF} = \frac{1}{1+r} \overrightarrow{AD} = \frac{-1}{1+r} \overrightarrow{a} + \frac{2}{3(1+r)} \overrightarrow{c}$$

$$\vec{OE} = \vec{OA} + \vec{AE} = \vec{a} + \left(-\frac{1}{Hr}\vec{a} + \frac{2}{3(Hr)}\vec{c}\right)$$
$$= \left(\frac{r}{1+r}\right)\vec{a} + \left(\frac{2}{3(Hr)}\right)\vec{c} \qquad (C)$$

(b)
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{A} + \overrightarrow{C}$$

 $\overrightarrow{OE} = \overrightarrow{SOB} = \overrightarrow{SA} + \overrightarrow{SC}$

$$\frac{r}{1+r} = S, \quad \frac{2}{3(1+r)} = S$$

$$\frac{r}{1+r} = \frac{2}{3(1+r)}$$

$$Y = \frac{2}{3}$$

$$S = \frac{2}{3} = \frac{2}{5}$$

SECONDARY 5

大

Recall: For non-zero vectors **u** and **v**, **u** is *parallel* to **v** if and only if $\overline{\mathbf{u} = k\mathbf{v}}$, where $k \neq 0$.

 \rightarrow It is given that $\mathbf{u} = a_1 \mathbf{i} + b_1 \mathbf{j}$ and $\mathbf{v} = a_2 \mathbf{i} + b_2 \mathbf{j}$. \mathbf{u} is parallel to \mathbf{v} if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2}.$$

12. It is given that the vectors $\overrightarrow{PQ} = 2\mathbf{a} + m(\mathbf{a} + \mathbf{b})$ and $\overrightarrow{RS} = -3\mathbf{a} + (m-2)\mathbf{b}$ are parallel, where \mathbf{a} and \mathbf{b} are two non-zero and non-parallel vectors and m is a scalar. Find the values of m.

12.3 More About Operations of Vectors

A. Position Vectors

It is given that A is a point on a plane π . If we take any point O on the plane as a reference point, then the position A can be represented by the vector \overrightarrow{OA} . Thus \overrightarrow{OA} is called the **position vector** of A with respect to O.

Example

13. Let A, B, C and D be any four points. Using position vectors with the reference point O, show that $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$.

$$\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{Ao} + \overrightarrow{oC} + \overrightarrow{Bo} + \overrightarrow{oD} = \overrightarrow{Ao} + \overrightarrow{oD} + \overrightarrow{Bo} + \overrightarrow{oC} = \overrightarrow{AD} + \overrightarrow{DC}$$

B. Division of a Line Segment

- (i) If AP: PB = m: n, then $\mathbf{p} = \frac{n\mathbf{a} + m\mathbf{b}}{m+n}$.
- (ii) If P is the mid-point of AB, then $\mathbf{p} = \frac{\mathbf{a} + \mathbf{b}}{2}$.

Example

- 14. In the figure, B is a point on AD such that AB : BD = 2 : 5 and C is the mid-point of AD. The position vectors of A and D with respect to O are **a** and **d** respectively. Express each of the following in terms of **a** and **d**.
 - (a) **OB**
 - (b) **OC**
 - (c) BC

(a)
$$\vec{OB} = \frac{5\vec{a} + 2\vec{d}}{5+2} = \frac{5}{7}\vec{a} + \frac{2}{7}\vec{d}$$

(b)
$$\vec{a} = \frac{\vec{a} + \vec{d}}{2} = \frac{1}{2} \vec{a} + \frac{1}{2} \vec{d}$$

MD: DR= 21

- 15. In $\triangle PQR$, M is the mid-point of PQ. D is a point on MR such that MD = 2DR. The position vectors of P, Q, R, D and M with respect to O are p, q, r, d and m respectively.
 - (a) Express **m** in terms of **p** and **q**.

(b) Express \mathbf{d} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} .

(a)
$$\vec{RM} = \frac{\vec{RP} + \vec{RQ}}{2}$$
 $\vec{RO} + \vec{OM} = \frac{\vec{RO} + \vec{OP} + \vec{RO} + \vec{OQ}}{2}$
 $\vec{RO} + \vec{OM} = \frac{\vec{PO} + \vec{OP} + \vec{RO} + \vec{OQ}}{2}$
 $\vec{PO} + \vec{OM} = \frac{\vec{PO} + \vec{OP} + \vec{PO} + \vec{OP}}{2}$
 $\vec{PO} + \vec{OP} = \frac{\vec{PO} + \vec{OP}}{2}$

- 16. In $\triangle ABC$, M is a point on AB such that AM: MB = 2:3. N is the mid-point of BC. O is a point on AN such that AO : ON = 4 : 3. Let AB = p and AC = q.
 - (a) Express **CO** in terms of **p** and **q**.
 - (b) Are C, O and M collinear? Explain your answer.

$$(a) \overrightarrow{CA} = -\overrightarrow{q}$$

$$\overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB} = -\overrightarrow{q} + \overrightarrow{P}$$

$$\overrightarrow{CN} = \frac{1}{2} \overrightarrow{CB} = \frac{1}{2} \overrightarrow{P} - \frac{1}{2} \overrightarrow{q}$$

$$\overrightarrow{CO} = \frac{3}{2} \overrightarrow{CA} + \frac{4}{2} \overrightarrow{CN}$$

$$= \frac{3}{7}\vec{q} + \frac{4}{7}(\frac{1}{7}\vec{p} - \frac{1}{2}\vec{q}) = \frac{3}{7}\vec{p} - \frac{1}{7}\vec{q}$$
(b) CM = $\frac{3}{7}$ CA + $\frac{2}{7}$ CB = $-\frac{3}{7}\vec{q} + \frac{2}{7}(-\vec{q} + \vec{p})$

$$= \frac{3}{7}\vec{p} - \frac{1}{7}\vec{q}$$

$$= \frac{3}{7}\vec{p} - \frac{1}{7}\vec{q}$$

$$\vec{co} = \frac{1}{7} \cdot \vec{cM}$$
, : co//cM, cro, M are Collinear.

17.

In the figure, $\mathbf{OA} = \mathbf{a}$ and $\mathbf{OB} = \mathbf{b}$. C and D are two points on the lines AB and OB such that AC: CB = 1: r, OD: DB = 1: s and AT: TD = 1: t.

- (a) Express the vectors **OC** and **OT** in terms of \mathbf{a} , \mathbf{b} , r, s and t.
- (b) Express t in terms of r and s.

(a)
$$\vec{oc} = \frac{1 \cdot \vec{b} + r \cdot \vec{a}}{1 + r} = \frac{r}{1 + r} \vec{a} + \frac{1}{1 + r} \vec{b}$$

$$\vec{oD} = \frac{1}{1 + s} \vec{oB} = \frac{1}{1 + s} \vec{b}$$

$$\vec{oT} = 1 \cdot \vec{oD} + t \cdot \vec{a} = \frac{t}{1 + t} \vec{a} + \frac{1}{(1 + s)(1 + t)} \vec{b}$$

(b) = 0, c. T are collinear.

$$\frac{t}{1+t} = \frac{1}{(1+s)(1+t)}$$

$$\frac{r}{1+r} = \frac{1}{1+s}$$

$$t = \frac{r}{1+s}$$

12.4 Vectors in the Rectangular Coordinate System

Vectors in a Plane

The two-dimensional vector system consists of two perpendicular unit vectors i and j.

If the origin O of the two-dimensional rectangular coordinate plane is taken as the reference point for position vectors, then any position vector can be expressed in terms of unit vectors i and j.

(a)
$$\overrightarrow{OZ} = x\mathbf{i} + y\mathbf{j}$$

(b)
$$|\overrightarrow{OZ}| = \sqrt{x^2 + y^2}$$

(c)
$$\sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$$
 and $\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$

If
$$\overrightarrow{OA} = x_1 \mathbf{i} + y_1 \mathbf{j}$$
 and $\overrightarrow{OB} = x_2 \mathbf{i} + y_2 \mathbf{j}$, then

将派前
$$\overrightarrow{AB} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)$$

$$\overrightarrow{AB} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j}$$
 and $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Example

15. Find **PQ** in terms of **i** and **j** for the points P(-6, 2) and Q(-4, -8).

$$\overrightarrow{OP} = -6\overrightarrow{1} + 2\overline{\overrightarrow{1}}$$

$$\overrightarrow{OQ} = -4\overrightarrow{1} - 8\overline{\overrightarrow{1}}$$

$$\vec{OP} = -6\vec{1} + 2\vec{j}$$
 $\vec{PQ} = (-4 + 6)\vec{1} + (-8 - 2)\vec{j} = \vec{PO} + \vec{OQ}$

$$\vec{OQ} = -4\vec{1} - 8\vec{j}$$

$$= 2\vec{1} - 10\vec{j}$$

16. Express the position vectors of P and Q in terms of \mathbf{i} and \mathbf{j} .

$$\vec{OP} = 2C_{5}\vec{b}\vec{o}\vec{i} + 2\vec{i}\vec{m}\vec{b}\vec{o}\vec{j}$$

$$= \vec{i} + \vec{j}\vec{3}\vec{j}$$

$$= \vec{OQ} = -1C_{5}\vec{3}\vec{o}\vec{i} - 1\vec{s}\vec{m}\vec{3}\vec{o}\vec{j}$$

$$= -\vec{j}\vec{3}\vec{i} - 2\vec{j}$$

- 17. In the figure, **a** is a vector making an angle of 30° with the positive x-axis and $|\mathbf{a}| = 5$.
 - (a) Express \mathbf{a} in terms of \mathbf{i} and \mathbf{j} .
 - (b) If **b** is a vector in the same direction of **a** and $|\mathbf{b}| = 6$, express **b** in terms of **i** and

j.

Hints for (b):

Find the unit vector of a.

Unit vector of $\mathbf{a} = \frac{\mathbf{a}}{|\mathbf{a}|}$

(a)
$$\vec{a} = \int \cos 30\vec{i} + \int \sin 30\vec{j} = \int \frac{1}{2}\vec{i} + \frac{1}{2}\vec{j}$$

(b) $\int \vec{a} \times \vec{b} = \frac{\vec{b}}{5}\vec{a} = 3\sqrt{3}\vec{i} + 3\vec{j}$

(b)
$$\frac{1}{5}\vec{a} \times 6 = \frac{6}{5}\vec{a} = 3\vec{3}\vec{1} + 3\vec{5}$$

- 18. It is given that $OA = 2\mathbf{i} + 5\mathbf{j}$ and $OB = -2\mathbf{i} + 8\mathbf{j}$.
 - (a) Find the vector \overrightarrow{AB} .
 - (b) Find the unit vector along the direction \overline{AB} .

$$(a) \quad \overrightarrow{AB} = -4\overrightarrow{1} + 3\overrightarrow{5}$$

$$= \frac{\overline{AB}}{|\overline{AB}|}$$

$$= \frac{\overline{AB}}{|\overline{AB}|}$$

$$= \frac{1}{5}\overline{AB}$$

$$= -\frac{5}{5}$$

19. It is given that $\mathbf{a} = 2\mathbf{i} + (\lambda - 4)\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + \lambda \mathbf{j}$, where λ is a scalar. If \mathbf{a} and \mathbf{b} are parallel, find the value of λ .

$$\frac{3}{2} = \frac{\pi}{\pi - 4}$$

$$\frac{3}{3} = \frac{\pi}{\pi - 4}$$

$$\frac{3}{5} = \frac{\pi}{3} + 12\overline{3}$$

$$\frac{3}{2} = \frac{\pi}{3} + 12\overline{3}$$

$$\frac{3}{2} = \frac{\pi}{3} = \frac{\pi}{5}$$

$$\frac{3}{2} = \frac{\pi}{3} = \frac{\pi}{5}$$

- 20. It is given that $\mathbf{OA} = \mathbf{i} + \mathbf{j}$, $\mathbf{OB} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{OC} = k\mathbf{i} + 2\mathbf{j}$.
 - (a) Find **AB** and express **BC** in terms of k.
 - (b) Find the value of k if A, B and C are collinear.

(a)
$$\vec{AB} = \vec{A} \cdot \vec{o} + \vec{o} \vec{B} = \vec{7} + \vec{2} \vec{j}$$

 $\vec{BC} = \vec{B} \cdot \vec{o} + \vec{o} \vec{C} = (k-2)\vec{1} - \vec{j}$

(b) AB // BC
$$\frac{k-2}{1} = \frac{-1}{2}$$

$$2k-4 = -1$$

$$k = \frac{3}{2}$$

21. It is given that $\mathbf{OA} = 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{OB} = -7\mathbf{i} + 3\mathbf{j}$. If P is a point on AB such that AP : PB = 1 : 2, find **OP**.

- 22. It is given that $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 10\mathbf{i} \mathbf{j}$.
 - (a) Find $|\mathbf{b} \mathbf{a}|$.
 - (b) If a vector **c** is opposite $\mathbf{b} \mathbf{a}$ and $|\mathbf{c}| = 15$, express **c** in terms of **i** and **j**.

$$(a) \quad \vec{b} - \vec{a} \\
= 8\vec{i} - 6\vec{j} \\
= \sqrt{8^2 + (-6)^2} \\
= 10$$

(b)
$$\vec{c}$$

= $\frac{1}{10} (\vec{b} - \vec{a}) \times 15$
= $\frac{-3}{2} (8\vec{1} - \vec{b})$
= $-(2\vec{1} + 9\vec{j})$

23. It is given that $\mathbf{u} = -6\mathbf{i} + 9\mathbf{j}$ and $\mathbf{v} = 3\mathbf{i} - 5\mathbf{j}$.

- (a) Find $|\mathbf{u} + \mathbf{v}|$.
- (b) Find the angle between $\mathbf{u} + \mathbf{v}$ and the positive x-axis correct to the nearest 0.1°.
- If a vector **p** has the same direction as $\mathbf{u} + \mathbf{v}$ and $|\mathbf{p}| = 13$, express **p** in terms of **i** and **j**.

(a)
$$\vec{u} + \vec{v} = -3\vec{i} + 4\vec{j}$$

 $|\vec{u} + \vec{v}| = \sqrt{(-3)^2 + 4^2} = 5$
(b) required any $|\vec{u}| = 180^{\circ} - 4 = 180^{\circ}$
 $= (-6.9^{\circ})$

(c).
$$\vec{p} = \frac{13}{5}(\vec{u} + \vec{v}) = \frac{-39}{5} = \frac{1}{5} + \frac{52}{5} = \frac{3}{5}$$

24. A(1,-4) and B(-3,-2) are two given points.

- (a) Find $|\overrightarrow{AB}|$.
- (b) Find the angle between AB and the positive x-axis measured in anticlockwise direction. (Give your answer correct to the nearest 0.1°)
- \overrightarrow{OC} is a vector which is in the direction of \overrightarrow{AB} and $|\overrightarrow{OC}| = \sqrt{5}$.

Find the coordinates of C.

(c)
$$\overrightarrow{AB} = (-3-1)^{\frac{1}{2}} + (-2-(-4))^{\frac{1}{2}}$$

$$= -4^{\frac{1}{2}} + 2^{\frac{1}{2}}$$

$$= -4^{\frac{1}{2}} + 2^{\frac{1}{2}}$$

(c)
$$\overrightarrow{oC} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \times \overrightarrow{J5} = \frac{1}{2} \overrightarrow{AB} = -2\overrightarrow{1} + \overrightarrow{5}$$

B. Vectors in Space

- (a) The three-dimensional vector system consists of three mutually perpendicular unit vectors i,
 j and k.
- (b) The vector **OP** with starting point O and terminal point P(a,b,c) can be represented in the form $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.
- (c) a, b and c are called the x-component, y-component and z-component of **OP**.

(d) If
$$OP = ai + bj + ck$$
, then $|OP| = \sqrt{a^2 + b^2 + c^2}$.

Complete the following table.

	Coordinates of P	\overrightarrow{OP}	$\left \overrightarrow{OP} ight $
E.g.	(1,-2, 2)	i-2j+2k	$\sqrt{(1)^2 + (-2)^2 + (2)^2} = 3$
(a)	(-2, 3, 6)	-27+37+6	(-2)2+ 32+ 62 = 7
(b)	(6,-2,-9)	67-27-97	$\sqrt{6^2 + (-2)^2 + (-9)^2} = 1$
(c)	(4,-1,8)	47-7+81	42+(-1)2+82=9

If
$$\overrightarrow{OA} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$$
 and $\overrightarrow{OB} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$, then

$$\overrightarrow{AB} = \overrightarrow{Ao} + \overrightarrow{OB}$$

$$= \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (a_1 - a_1) \overrightarrow{i} + (b_2 - b_1) \overrightarrow{j} + (c_4 - c_1) \overrightarrow{k}$$

$$|\overrightarrow{AB}| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_4 - c_1)^2}$$

Example

- 25. Consider two points A(1,-2, 3) and B(4, 1, 0).
 - (a) Find $|\overrightarrow{AB}|$.
 - (b) Find the unit vector which has the same direction as AB.

(a)
$$\overrightarrow{AB} = 3\overrightarrow{1} + 3\overrightarrow{j} - 3\overrightarrow{k}$$

 $|\overrightarrow{AB}| = \sqrt{3^2 + 3^2 + 3^2} = 3\sqrt{3}$

- 26. Consider two points P(-2,3,1) and Q(1,0,-5).
 - **PQ** . (a)
 - (b) Find the vector **RS** which has the same direction as **PQ** with $|\mathbf{RS}| = \sqrt{6}$.

(a)
$$\vec{PQ} = 3\vec{1} - 3\vec{j} - 6\vec{k}$$

 $|\vec{PQ}| = \sqrt{3^2 + (-3)^2 + (-6)^2} = 3\sqrt{6}$

(b)
$$\overrightarrow{RS} = \frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} \times \overrightarrow{J6}$$

$$= \frac{1}{3} \overrightarrow{PQ}$$

$$= \frac{1}{7} - \frac{7}{5} - 2\overrightarrow{F}$$

Let $\mathbf{p} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ and $\mathbf{q} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$ be two non-zero vectors. Then

- (i) $\mathbf{p}//\mathbf{q}$ if and only if there exists $m \neq 0$ such that $\mathbf{p} = m\mathbf{q}$.
- (ii) $\mathbf{p}//\mathbf{q}$ if and only if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

Example

27. Four points A(1, 3, 5), B(2, 6, r), C(1, m, -2) and D(2, 5, 8) are given. If AB / / CD, find the values of m and r.

$$\overrightarrow{AB} = (2-1)\vec{1} + (6-3)\vec{j} + (r-5)\vec{k}$$

$$= \vec{1} + 3\vec{j} + (r-5)\vec{k}$$

$$\overrightarrow{CD} = (2-1)\vec{1} + (5-m)\vec{j} + (8+2)\vec{k}$$

$$= \vec{1} + (5-m)\vec{j} + 10\vec{k}$$

28. Three points A(5, 2, 7), B(2, 1, 3) and C(8, 3, 11) are given. Determine whether A, B and C are collinear.

are collinear.

$$\overrightarrow{AB} = -3\overrightarrow{1} - \overrightarrow{5} - 4\overrightarrow{k}$$

$$\overrightarrow{BC} = 6\overrightarrow{1} + 2\overrightarrow{j} + 8\overrightarrow{k}$$

29. It is given that the points P(1, m-7, n), Q(0, m-2, 5) and R(2, 17, 5n-2) are collinear. Find the values of m and n.